user login

Duplex Stainless Steel Pipes And Tubes

Place of Origin: Zhejiang

Company Profile

Location: Ningbo, Zhejiang, China (Mainland)
Business Type: Manufacturer
Main Products: Stainless Steel Seamless Pipe, Stainless Steel Seamless Tube, Stainless Steel U Bend Tube

Product Description

 

 

UNS 32750 Super Duplex Stainless Steel Pipes And Tubes

 

 

 
UNS 32750 Super Duplex Stainless Steel Pipes and Tubes

Super Duplex Stainless Steel is a highly alloyed, good performance Duplex steel with a pitting resistance. Super Duplex offers good resistance to pitting and crevice corrosion. Super Duplex is suited for use in aggressive environments. Super Duplex Stainless has good resistance to stress corrosion cracking in chloride and sour environments. Super Duplex has good resistance to erosion corrosion and corrosion fatigue.

Super Duplex stainless like Duplex, is a mixed microstructure of austenite and ferrite (50/50) which has improved strength over ferritic and austenitic steel grades. The main difference is that Super duplex has a higher Molybdenum and Chromium content which gives the material greater corrosion resistance.

Super Duplex has the same benefits as its counterpart - it has lower production costs when compared with similar ferritic and austenitic grades and due to the materials increased tensile and yield strength, in many cases this gives the purchaser the welcomed option of purchasing smaller thicknesses without the need to compromise on quality and performance. 

 

 

Benefits of UNS32750 Super Duplex Stainless Steel

  • Improved corrosion resistance in comparison to Duplex
  • Greater tensile and yield strength
  • Good ductility and toughness
  • Good stress corrosion cracking resistance (SSC)
  • Opportunity for purchases to reduce their material costs without compromising on quality

 

 

General Properties

Alloy 2507 is a super duplex stainless steel with 25% chromium, 4% molybdenum, and 7% nickel designed for demanding applications which require exceptional strength and corrosion resistance, such as chemical process, petrochemical, and seawater equipment. The steel has excellent resistance to chloride stress corrosion cracking, high thermal conductivity and a low coefficient of thermal expansion. The high chromium, molybdenum, and nitrogen levels provide excellent resistance to pitting, crevice, and general corrosion.

The impact strength is also high. Alloy 2507 is not recommended for applications which require long exposures to temperatures above 5700F because of the risk of a reduction in toughness.

Applications

  • Oil and gas industry equipment
  • Offshore platforms, heat exchangers, process and service water systems, fire-fighting systems, injection and ballast water systems
  • Chemical process industries, heat exchangers, vessels, and piping
  • Desalination plants, high pressure RO-plant and seawater piping
  • Mechanical and structural components, high strength, corrosion-resistant parts
  • Power industry FGD systems, utility and industrial scrubber systems, absorber towers, ducting, and piping

Standards
ASTM/ASME .......... A240 - UNS S32750
EURONORM............ 1.4410 - X2 Cr Ni MoN 25.7.4
AFNOR.................... Z3 CN 25.06 Az

Corrosion Resistance
General Corrosion
The high chromium and molybdenum content of 2507 makes it extremely resistant to uniform corrosion by organic acids like formic and acetic acid. 2507 also provides excellent resistance to inorganic acids, especially those containing chlorides.
In dilute sulfuric acid contaminated with chloride ions, 2507 has better corrosion resistance than 904L, which is a highly alloyed austenitic steel grade specially designed to resist pure sulfuric acid.

Stainless steel of type 316L (2.5%Mo) cannot be used in hydrochloric acid due to the risk of localized and uniform corrosion. However, 2507 can be used in dilute hydrochloric acid. Pitting need not be a risk in the zone below the borderline in this figure, but crevices must be avoided.

Isocorrosion curves, 0.1 mm/year, in sulfuric acid 
with an addition of 2000 ppm chloride ions

Isocorrosion curves, 0.1 mm/year, in hydrochloric acid. 
Broken line curve represents the boiling point

Critical Pitting Temperature (CPT) range for 
various alloys in 1M NACl

Critical Crevice Corrosion Temperature (CCT)
for various alloys in 10% FeCl3

Intergranural Corrosion 
2507's low carbon content greatly lowers the risk of carbide precipitation at the grain boundaries during heat treatment; therefore, the alloy is highly resistant to carbide-related intergranular corrosion.
Stress Corrosion Cracking
The duplex structure of 2507 provides excellent resistance to chloride stress corrosion cracking (SCC). Because of its higher alloy content, 2507 is superior to 2205 in corrosion resistance and strength. 2507 is especially useful in offshore oil and gas applications and in wells with either naturally high brine levels or where brine has been injected to enhance recovery.
Pitting Corrosion 
Different testing methods can be used to establish the pitting resistance of steels in chloride-containing solutions. The data above were measured by an electrochemical technique based on ASTM G 61. The critical pitting temperatures (CPT) of several high-performance steels in a 1M sodium chloride solution were determined. The results illustrate the excellent resistance of 2507 to pitting corrosion. The normal data spread for each grade is indicated by the dark gray portion of the bar.

Crevice Corrosion
The presence of crevices, almost unavoidable in practical constructions and operations, makes stainless steels more susceptable to corrosion in chloride enviroments. 2507 is highly resistant to crevice corrosion. The critical crevice corrosion temperatures of 2507 and several other high-performance stainless steels are shown above.

Chemical Analysis
Typical values (Weight %)

 

You Might Also Like

Post Buying Request