user login

LiFePO4 battery

Min. Order: 1 Piece/Pieces
Trade Term: FOB
Payment Terms: T/T
Supply Ability: 4000
Place of Origin: Guangdong

Company Profile

Location: Shenzhen, Guangdong, China (Mainland)
Business Type: Manufacturer, Trading Company
Main Products: Button Cell, Polymer Li-ion Battery Category, Li-ion Battery Category, Li-ion Cylindrical Batteries, 120C-rate Cell&pack

Product Detail

Means of Transport: Ocean, Air
Production Capacity: 4000
Packing: standard carton box
Delivery Date: 30 days
Show

Product Description

Innovation in Li-ion Battery
LiFePO4 Power Battery: Faster charging and safer performance
      It is clear that the small capacity Li-ion (polymer) Battery containing lithium cobalt oxide (LiCoO2) offers a genuinely viable option for electronics and digital applications. However, lithium cobalt oxide (LiCoO2) is very expensive and un-safe for large capacity Li-ion Battery. Recently lithium iron phosphate (LiFePO4) has been becoming "best-choice" materials in commercial Li-ion (polymer) Batteries for large capacity and high power applications, such as lap-top, power tools, e-wheel chair, e-bike, e-car and e-bus. A LiFePO4 battery has hybrid characters: as safe as lead-acid battery and as powerful as lithium ion cells. The advantages of large format Li-ion (polymer) batteries containing lithium iron phosphate (LiFePO4) are listed as below:
      1. Fast charging:
      During charging process, a conventional Li-ion Battery containing lithium cobalt oxide (LiCoO2) needs two steps to be fully charged: step 1 is using constant current (CC) to get 60% State of Charge (SOC); step 2 takes place when charge voltage reaches 4.2V, upper limit of charging voltage, turning from CC to constant voltage (CV) while the charging current is taping down. The step 1 (60%SOC) needs two hours and the step 2 (40%SOC) needs another two hours. LiFePO4 battery can be charged by only one step of CC to reach 95%SOC or be charged by CC+CV to get 100%SOC. The total charging time will be two hours.

      2. Large overcharge tolerance and safer performance
      A LiCoO2 battery has a very narrow overcharge tolerance, about 0.1V over 4.2V of charging voltage plateau and upper limit of charge voltage. Continuous charging over 4.3V would either damage the battery performance, such as cycle life, or result in firing and explosion. A LiFePO4 battery has a much wider overcharge tolerance of about 0.7V from its charging voltage plateau 3.4V. Exothermic heat of chemical reaction with electrolyte measured by DSC after overcharge is only 90J/g for LiFePO4 verse 1600J/g for LiCoO2 . The more is the exothermic heat, the larger energy heating up the battery in its abusive condition, the more chance toward firing and explosion. A LiFePO4 battery would be overcharged upto 30V without portection circuit board. It is suitable for large capacity and high power applications. From viewpoint of large overcharge tolerance and safety performance, a LiFePO4 battery is similar to lead-acid battery.

      3. Self balance
      Alike lead-acid battery, a number of LiFePO4 cells in a battery pack in series connection would balance each other during charging process, due to large overcharge tolerance. This self balance character can allow 10% difference between cells for both voltage and capacity inconsistency.
    4. Simplifying battery management system (BMS) and battery charger
      Large overcharge tolerance and self-balance character of LiFePO4 battery would simplify battery protection and balance circuit boards, lowering their cost. One step charging process would allow to use simpler conventional power supplier to charge LiFePO4 battery instead to use a expensive professional Li-ion battery charger.
      5. Longer cycle life
      In comparison with LiCoO2 battery which has a cycle life of 400 cycles, LiFePO4 battery extends its cycle life up to 2000 cycles.
      6. High temperature performance
      It is detrimental to have a LiCoO2 battery working at elevated temperature, such as 60C.. However, a LiFePO4 battery runs better at elevated temperature, offering 10% more capacity, due to higher lithium ionic conductivity.
LiFePO4 Battery Pack

Voltage (V)Capacity (Ah)Weight (kg)Dimensions (mm)Motor Power (W)
12404.5185*105*145400
24103.0150*70*145250
204.5145*135*145350
306.5205*135*145450
408.5280*135*145800
36104.0115*135*145400
206.5210*135*145600
3010.0305*135*145800
4013.5280*200*1451200
48104.5150*135*145550
209.0280*135*145800
3016.0205*305*1351200
4020.0275*305*1351600
60106.0180*135*145600
2011.0280*200*1451000
3020.0240*305*1351500
4025.0320*305*1352000
Post Buying Request